this post was submitted on 31 Dec 2023
17 points (94.7% liked)

Collapse

3237 readers
9 users here now

We have moved to https://lemm.ee/c/collapse -- please adjust your subscriptions

This is the place for discussing the potential collapse of modern civilization and the environment.


Collapse, in this context, refers to the significant loss of an established level or complexity towards a much simpler state. It can occur differently within many areas, orderly or chaotically, and be willing or unwilling. It does not necessarily imply human extinction or a singular, global event. Although, the longer the duration, the more it resembles a ‘decline’ instead of collapse.


RULES

1 - Remember the human

2 - Link posts should come from a reputable source

3 - All opinions are allowed but discussion must be in good faith.

4 - No low effort posts.


Related lemmys:

founded 5 years ago
MODERATORS
top 1 comments
sorted by: hot top controversial new old
[–] eleitl@lemmy.ml 4 points 2 years ago

Editor’s summary

How the West Antarctic Ice Sheet (WAIS) responded to warmer climates in the geologic past has obvious relevance to our understanding of what its future could be as global temperatures rise due to human activities. Using genetic analyses of a type of circum-Antarctic octopus, Pareledone turqueti, Lau et al. showed that the WAIS collapsed completely during the last interglacial period, when global sea levels were 5 to 10 meters higher than today and global average temperatures were only about 1°C warmer (see the Perspective by Dutton and DeConto). The implication of this finding is that major WAIS collapse and the consequent rise in sea level could be caused even by the minimal temperature rises projected for stringent climate change mitigation. —H. Jesse Smith

Abstract

The marine-based West Antarctic Ice Sheet (WAIS) is considered vulnerable to irreversible collapse under future climate trajectories, and its tipping point may lie within the mitigated warming scenarios of 1.5° to 2°C of the United Nations Paris Agreement. Knowledge of ice loss during similarly warm past climates could resolve this uncertainty, including the Last Interglacial when global sea levels were 5 to 10 meters higher than today and global average temperatures were 0.5° to 1.5°C warmer than preindustrial levels. Using a panel of genome-wide, single-nucleotide polymorphisms of a circum-Antarctic octopus, we show persistent, historic signals of gene flow only possible with complete WAIS collapse. Our results provide the first empirical evidence that the tipping point of WAIS loss could be reached even under stringent climate mitigation scenarios.