this post was submitted on 14 Jun 2024
326 points (97.7% liked)
[Dormant] moved to !space@mander.xyz
10767 readers
1 users here now
This community is dormant, please find us at !space@mander.xyz
You can find the original sidebar contents below:
Rules
- Be respectful and inclusive.
- No harassment, hate speech, or trolling.
- Engage in constructive discussions.
- Share relevant content.
- Follow guidelines and moderators' instructions.
- Use appropriate language and tone.
- Report violations.
- Foster a continuous learning environment.
Picture of the Day
The Busy Center of the Lagoon Nebula
Related Communities
🔭 Science
- !astronomy@mander.xyz
- !curiosityrover@lemmy.world
- !earthscience@mander.xyz
- !esa@feddit.nl
- !nasa@lemmy.world
- !perseverancerover@lemmy.world
- !physics@mander.xyz
- !space@beehaw.org
- !space@lemmy.world
🚀 Engineering
🌌 Art and Photography
Other Cool Links
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I wonder why
If you're asking about the shielding, probably the mass required for materials that are generally used for radiation shielding. If the craft is built terrestrially, the amount of energy necessary to launch would be insurmountable with current chemical rockets.
Now, if the craft were manufactured in space (and forming of the shielding materials were practical in low-G), the problematic materials could be shuttled up over time, making it a non-issue. This would, of course, also mean that the craft could not be used for re-entry and would require landing craft. And there's all the logistics challenges (supplying air, etc). Probably though the direction that will be necessary for long-distance space craft.
I wonder how much energy would have to be generated to have an active “shield generator” that would positively charge the hull to deflect the solar radiation from it?
The trouble is that solar radiation has both charge polarities in it, meaning your charged shield only deflects half the particles while attracting the other half.
Oh that is interesting. Maybe an oscillating polarity could do it?
First, you'd need to figure out the best "energy shield(s)" for deflecting the problematic radiation. A quick glance shows that there's been some promising research using charged plasma bubbles contained by superconductors. That does not sound likely to be low energy. Then there's other problems like getting telemetry data, etc. Would be awesome if such an approach were proven to work.