this post was submitted on 26 Mar 2024
118 points (87.8% liked)

Asklemmy

43810 readers
1 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy ๐Ÿ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~

founded 6 years ago
MODERATORS
 

The monotheistic all powerful one.

you are viewing a single comment's thread
view the rest of the comments
[โ€“] MxRemy@lemmy.one 23 points 1 year ago (14 children)

Zeno's Paradox, even though it's pretty much resolved. If you fire an arrow at an apple, before it can get all the way there, it must get halfway there. But before it can get halfway there, it's gotta get a quarter of the way there. But before it can get a fourth of the way, it's gotta get an eighth... etc, etc. The arrow never runs out of new subdivisions it must cross. Therefore motion is actually impossible QED lol.

Obviously motion is possible, but it's neat to see what ways people intuitively try to counter this, because it's not super obvious. The tortoise race one is better but seemed more tedious to try and get across.

[โ€“] mitrosus@discuss.tchncs.de 9 points 1 year ago (6 children)

So the resolution lies in the secret that a decreasing trend up to infinity adds up to a finite value. This is well explained by Gabriel's horn area and volume paradox: https://www.youtube.com/watch?v=yZOi9HH5ueU

[โ€“] Jayjader@jlai.lu 3 points 1 year ago (4 children)

If I remember my series analysis math classes correctly: technically, summing a decreasing trend up to infinity will give you a finite value if and only if the trend decreases faster than the function/curve x -> 1/x.

[โ€“] mitrosus@discuss.tchncs.de 2 points 1 year ago (1 children)

Great. Can you give me example of decreasing trend slower than that function curve?, where summation doesn't give finite value? A simple example please, I am not math scholar.

[โ€“] Jayjader@jlai.lu 1 points 1 year ago* (last edited 1 year ago) (1 children)

So, for starters, any exponentiation "greater than 1" is a valid candidate, in the sense that 1/(n^2), 1/(n^3), etc will all give a finite sum over infinite values of n.

From that, inverting the exponentiation "rule" gives us the "simple" examples you are looking for: 1/โˆšn, 1/โˆš(โˆšn), etc.

Knowing that โˆšn = n^(1/2), and so that 1/โˆšn can be written as 1/(n^(1/2)), might help make these examples more obvious.

[โ€“] mitrosus@discuss.tchncs.de 1 points 1 year ago (1 children)

Hang on, that's not a decreasing trend. 1/โˆš4 is not smaller, but larger than 1/4...?

[โ€“] Jayjader@jlai.lu 1 points 1 year ago

From 1/โˆš3 to 1/โˆš4 is less of a decrease than from 1/3 to 1/4, just as from 1/3 to 1/4 is less of a decrease than from 1/(3ยฒ) to 1/(4ยฒ).

The curve here is not mapping 1/4 -> 1/โˆš4, but rather 4 -> 1/โˆš4 (and 3 -> 1/โˆš3, and so on).

load more comments (2 replies)
load more comments (3 replies)
load more comments (10 replies)