this post was submitted on 19 Mar 2024
520 points (96.1% liked)
memes
16691 readers
3289 users here now
Community rules
1. Be civil
No trolling, bigotry or other insulting / annoying behaviour
2. No politics
This is non-politics community. For political memes please go to !politicalmemes@lemmy.world
3. No recent reposts
Check for reposts when posting a meme, you can only repost after 1 month
4. No bots
No bots without the express approval of the mods or the admins
5. No Spam/Ads/AI Slop
No advertisements or spam. This is an instance rule and the only way to live. We also consider AI slop to be spam in this community and is subject to removal.
A collection of some classic Lemmy memes for your enjoyment
Sister communities
- !tenforward@lemmy.world : Star Trek memes, chat and shitposts
- !lemmyshitpost@lemmy.world : Lemmy Shitposts, anything and everything goes.
- !linuxmemes@lemmy.world : Linux themed memes
- !comicstrips@lemmy.world : for those who love comic stories.
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Here's the original meme:
If I remember correctly, the ELI5 is it's impossible to measure something without interacting with it in some way. The calculations and science determine it will turn out like the top image. The moment we try to measure it though, we have to interact with it. This changes the calculations and whatnot, thus producing a different pattern.
It's that correct more or less?
Yeah, you're close. You seem to be suggesting that any measurement causes the interference pattern to disappear implying that we can't actually observe the interference pattern. I'm not sure if that's what you truly meant, but that isn't the case. Disclaimer: I'm not an expert - I could be mistaken.
The particle is actually being measured in both experiments, but it's measured twice in the second experiment. That's because both experiments measure the particle's position at the screen while the second one also measures if the particle passes through one of the slits. It's the measurement at the slit that disrupts the interference pattern; however, both patterns are physically observable. Placing a detector at the slit destroys the interference pattern, and removing the detector from the slit reintroduces the interference pattern.