this post was submitted on 07 Mar 2024
13 points (66.7% liked)

Technology

74055 readers
2800 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related news or articles.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, this includes using AI responses and summaries. To ask if your bot can be added please contact a mod.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
 

Technological feat aside:

Revolutionary heat dissipating coating effectively reduces temperatures by more than 10%

78.5C -> 70C = (78.5 - 70) / 78.5 = 0.1082 = 10% right?!

Well, not really. Celsius is an arbitrary temperature scale. The same values on Kelvin would be:

351.65K -> 343.15K = (351.65 - 343.15) / 351.65 = 0.0241 = 2% (???)

So that's why you shouldn't do % on temp changes. A more entertaining version: https://www.youtube.com/watch?v=vhkYcO1VxOk&t=374s

you are viewing a single comment's thread
view the rest of the comments
[–] 7heo@lemmy.ml 2 points 1 year ago* (last edited 1 year ago)

I would argue that what makes sense when considering temperature percentages wrt dissipation, is the difference between old and new, divided by the difference between the system at rest and the old temperature.

Which is then a ratio of offsets, rather than a ratio of one offset and a difference with an arbitrarily defined origin.

In this case, it is fair to assume the temperature at rest of the system around 292K, or 19C.

Which would give: (78.5C - 70C) / (78.5C - 19C) = 14.29%, or (351.65K - 343.15K) / (351.65K - 292.15K) = 14.29%.