Linux
Welcome to c/linux!
Welcome to our thriving Linux community! Whether you're a seasoned Linux enthusiast or just starting your journey, we're excited to have you here. Explore, learn, and collaborate with like-minded individuals who share a passion for open-source software and the endless possibilities it offers. Together, let's dive into the world of Linux and embrace the power of freedom, customization, and innovation. Enjoy your stay and feel free to join the vibrant discussions that await you!
Rules:
- 
Stay on topic: Posts and discussions should be related to Linux, open source software, and related technologies.
 - 
Be respectful: Treat fellow community members with respect and courtesy.
 - 
Quality over quantity: Share informative and thought-provoking content.
 - 
No spam or self-promotion: Avoid excessive self-promotion or spamming.
 - 
No NSFW adult content
 - 
Follow general lemmy guidelines.
 
view the rest of the comments
Granted, I was mostly shit posting. But in all seriousness: wouldn't Rust prevent that kind of exploit by inherent design?
https://stanford-cs242.github.io/f18/lectures/05-1-rust-memory-safety.html
C++ would also solve this for the same reason!!
If this is a joke, I don't get it
I think the idea is that it’s easier to manage your resources in C++ if you write your code using RAII. Linux is mainly C, not C++, which makes resource management a little bit more manual.
Rust however categorically tries to stop these problems from happening in an even stronger way. You can still write bad code in any language, but it’s supposed to be a lot more difficult to get memory corruption.