this post was submitted on 03 Nov 2025
111 points (96.6% liked)
Programming
23348 readers
291 users here now
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Rules
- Follow the programming.dev instance rules
- Keep content related to programming in some way
- If you're posting long videos try to add in some form of tldr for those who don't want to watch videos
Wormhole
Follow the wormhole through a path of communities !webdev@programming.dev
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
We had it because we needed to compile for Windows and Linux on both 32 and 64 bit processors. So we defined all our Int32, Int64, uint32, uint64 and so on. There were a bunch of these definitions within the core header file with #ifndef and such.
But you can use 64 bits int on a 32 bits linux, and vice versa. I never understood the benefits from tagging the stuff. You gotta go so far back in time where an int isn't compiled to a 32 bit signed int too. There were also already long long and size_t... why make new ones?
Readability maybe?
Very often you need to choose a type based on the data it needs to hold. If you know you'll need to store numbers of a certain size, use an integer type that can actually hold it, don't make it dependent on a platform definition. Always using
intcan lead to really insidious bugs where a function may work on one platform and not on another due to overfloeShow me one.
I mean I have worked on 16bits platforms, but nobody would use that code straight out of the box on some other incompatible platform, it doesn't even make sense.
Basically anything low level. When you need a byte, you also don't use a
int, you use auint8_t(reminder thatcharis actually not defined to be signed or unsigned, "Plain char may be signed or unsigned; this depends on the compiler, the machine in use, and its operating system"). Any time you need to interact with another system, like hardware or networking, it is incredibly important to know how many bits the other side uses to avoid mismatching.For purely the size of an
int, the most famous example is the Ariane 5 Spaceship Launch, there an integer overflow crashed the space ship. OWASP (the Open Worldwide Application Security Project) lists integer overflows as a security concern, though not ranked very highly, since it only causes problems when combined with buffer accesses (using user input with some arithmetic operation that may overflow into unexpected ranges).And the byte wasn't obliged to have 8 bits.
Nice example, but I'd say it'skind of niche 😁 makes me remember the underflow in a video game, making the most peaceful npc becoming a warmongering lunatic. But that would not have been helped because of defines.
It was a while ago indeed, and readability does play a big role. Also, it becomes easier to just type it out. Of course auto complete helps, but it's just easier.