No Stupid Questions
No such thing. Ask away!
!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.
The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:
Rules (interactive)
Rule 1- All posts must be legitimate questions. All post titles must include a question.
All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.
Rule 2- Your question subject cannot be illegal or NSFW material.
Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.
Rule 3- Do not seek mental, medical and professional help here.
Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.
Rule 4- No self promotion or upvote-farming of any kind.
That's it.
Rule 5- No baiting or sealioning or promoting an agenda.
Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.
Rule 6- Regarding META posts and joke questions.
Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.
On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.
If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.
Rule 7- You can't intentionally annoy, mock, or harass other members.
If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.
Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.
Rule 8- All comments should try to stay relevant to their parent content.
Rule 9- Reposts from other platforms are not allowed.
Let everyone have their own content.
Rule 10- Majority of bots aren't allowed to participate here. This includes using AI responses and summaries.
Credits
Our breathtaking icon was bestowed upon us by @Cevilia!
The greatest banner of all time: by @TheOneWithTheHair!
view the rest of the comments
The answer is about 1144.
Ok, let's do the probability math properly. Others have mentioned how it's a matter of probability how long until the last molecule of soup is taken out.
Suppositions:
There are N molecules in every ml of soup and every ml of water.
All soup molecules are the same.
Every spoonful takes out exactly 25N molecules out of the bowl selected at random, and they are immediately replaced by 25N molecules of water.
At the start, there are 500N molecules of soup in the bowl.
The question is:
How many spoonfuls is it expected to take until all soup molecules are removed?
For every spoonful, each molecule of soup in the bowl has a 25/500 chance of being removed from the bowl.
For ease of calculation, I will assume that each molecule being removed is independent of all others. This is technically wrong, because this implies that there is a very very tiny chance that all soup molecules are replaced in the very first spoonful. However, for the large number of molecules we are going to be working with, this shouldn't affect the final result in any meaningful way.
Number all soup molecules in the bowl: 1, 2, ..., 500N.
Define X_i to be the number of iterations it took until molecule i was removed. All X_i are I.I.D.:
P(X_i = 1) = 25/500 P(X_i = 2) = (475/500) * 25/500 P(X_i = 3) = (475/500)² * 25/500 ... P(X_i = n) = (475/500)^(n-1) * 25/500 ...
This is a geometric distribution with p = 25/500.
Now what we're interested in if the maximum value between all X_i
That is: max_i { X_i }
Specifically we want the "Expected Value" (basically the average) of it: E[ max_i { X_i } ]
This is exactly the question asked here: https://math.stackexchange.com/q/26167
According to the answer there, there is no closed-form exact answer but a very good approximation for the solution is:
1/2 + (1/λ) H_500N
Where λ = -log(1-p) and H_n is the nth harmonic number.
Now it's just a matter of plugging in the numbers.
According to Wolfram Alpha, there are N = 3.333*10^22 molecules in 1mL of water, or 1.666*10^25 in 500mL.
Again using Wolfram Alpha, the Nth harmonic number is H_500N = 58.652
With the formula given we get λ = -log(475/500) = 0.051293
Plugging it all in we get the expected number of spoonfuls:
0.5 + (1/0.051293)(52.438) = 1143.97 spoonfuls on average.
With enough coercion we can also force Wolfram Alpha to do the whole calculation in one go: 1/2 + 1/(-log(1-25/500)) * harmonic number (number of molecules in 500mL of water/molecule) giving 1143.9743.
Edit: initially used N instead of 500N and got the wrong answer of 1022.
Wow, someone actually bothered to do it properly! I just wrote some horrible R code and ended up with 1146 spoons to get to 50% probability of having either 1 or 0 soup molecules. So good to see that the answers were so close.
:)
What I would like to do is give a margin of error, e.g. "there is a 95% change that it will be between spoonful 1000 and spoonful 1300" or something like that. But I don't have the time to figure that out now, sounds like it would be harder to figure out than the expected value.
I’m tempted to run a full simulation that really picks those molecules randomly.